

Diligencia para hacer constar que las siguientes páginas de este documento se corresponden con la información que consta en la Secretaria de la Escuela Politécnica Superior de la Universidad de Sevilla relativa al programa oficial de la asignatura "Termotecnia" (1140018) del curso académico "2003-2004", de los estudios de "Ingeniero Técnico Industrial. Especialidad en Mecánica (Plan 2001)".

Regina Mª Nicaise Fito

Gestora de Centro

Código:PFIRM888CQUTR8g6W4VzhkGYfgUfu1. Permite la verificación de la integridad de este documento electrónico en la dirección: https://pfirma.us.es/verifirma				
FIRMADO POR	REGINA NICAISE FITO	FECHA	06/06/2018	
ID. FIRMA	PFIRM888CQUTR8g6W4VzhkGYfgUfu1	PÁGINA	1/6	

Escuela Universitaria Politécnica

Universidad de Sevilla

Ingeniero Técnico Industrial

TERMOTECNIA

I. Datos generales.

Titulación/especialidad Ingeniero Técnico Industrial

Especialidad en mecánica

Departamento Ing. Energética y mecánica de fluidos

Área de conocimiento Máquinas y Motores Térmicos.

Profesores D. José Manuel Salmerón Lissén y D. Salvador

Rodríguez Dujat des Allimes

Curso 2003-2004 Carácter de la asignatura Troncal

Impartición Cuatrimestral (2º cuatrimestre)

Turno Mañana/Tarde **Créditos (Teóricos/prácticos)** 6 (4.5/1.5)

Descriptor Fundamentos térmicos y termodinámicos.

Equipos y generadores térmicos. Calor y frío

industrial

II. Objetivo de la asignatura

Se imparten 4 horas de clases de teoría y problemas a la semana. Las clases se distribuyen entre martes, miércoles y viernes.

La enseñanza está orientada al estudio de los procesos de transferencia de energía en sus dos formas, energía térmica (calor) y energía mecánica (trabajo). Este estudio permite la posterior evaluación de los equipos (generadores de calor y maquinas de potencia) y procesos de transferencia.

Se hará especial hincapié en el carácter técnico de la signatura, de forma que se orientaran los contenidos hacia su componente industrial.

Las clases teóricas se complementan con clases de problemas, en las que se introducen problemas reales.

Se realizaran a lo largo del curso 4 prácticas de laboratorio para complementar los conocimientos teóricos.

Código:PFIRM888CQUTR8g6W4VzhkGYfgUfu1. Permite la verificación de la integridad de este documento electrónico en la dirección: https://pfirma.us.es/verifirma				
FIRMADO POR	REGINA NICAISE FITO	FECHA	06/06/2018	
ID. FIRMA	PFIRM888CQUTR8g6W4VzhkGYfgUfu1	PÁGINA	2/6	

III. Metodología.

Las clases teóricas se desarrollan mediante la proyección de transparencias de cada uno de los temas que aparecen en el programa (Apartado V). La colección de transparencias se ha elaborado específicamente para esta asignatura a partir de la literatura existente que se recoge en el Apartado VI.

Las clases teóricas se complementan con clases de problemas en los que se plantean problemas reales para cada uno de los bloques temáticos. Se está elaborando una colección de problemas específico para esta asignatura. Se dispone, además, de una colección de tablas, gráficas y ecuaciones necesaria para la resolución de problemas.

IV. Criterios de evaluación.

Se realizará con carácter obligatorio el clásico examen de teoría y problemas, en la que la resolución de problemas por parte del alumno tendrá un peso superior a las cuestiones teóricas.

Se realizará un único examen al final del cuatrimestre y el examen final de septiembre.

V. Programa de la asignatura

BLOQUE I. TERMODINAMICA BASICA.

Tema 1: Conceptos básicos de la termodinámica.

- 1. Introducción.
- 2. Clasificación de los sistemas termodinámicos.
- 3. Variables de estado y sistema elemental.
- 4. Equilibrio térmico. Temperatura.
- 5. Procesos termodinámicos.
- 6. El gas ideal.

Tema 2: Trabajo, Energía interna y calor.

- 1. Introducción.
- 2. Trabajo de expansión.
- 3. Trabajo de rozamiento.
- 4. Energía interna.
- 5. Calor.

Código:PFIRM888CQUTR8g6W4VzhkGYfgUfu1. Permite la verificación de la integridad de este documento electrónico en la dirección: https://pfirma.us.es/verifirma				
FIRMADO POR	REGINA NICAISE FITO	FECHA	06/06/2018	
ID. FIRMA	PFIRM888CQUTR8g6W4VzhkGYfgUfu1	PÁGINA	3/6	

- 6. Entalpía.
- 7. Calores específicos.
- 8. Transformación adiabática reversible de un gas ideal.

Tema 3: Primer principio de la termodinámica.

- 1. Introducción.
- 2. Primer principio aplicado a sistemas cerrados.
- 3. Primer principio en procesos cíclicos. Sistemas Cerrados.
- 4. Primer principio aplicado a sistemas abiertos.
- 5. Primer principio en procesos cíclicos. Sistemas abiertos.

Tema 4: Entropía y segundo principio de la termodinámica.

- 1. Introducción.
- 2. Enunciados de Clausius y Kelvin-Planck del segundo principio de la Termodinámica.
- 3. Procesos reversibles e irreversibles
- 4. Ciclo de Carnot.
- 5. Teoremas de Carnot.
- 6. La desigualdad de Clausius.
- 7. Concepto de entropía.
- 8. Entropía de un gas ideal.
- 9. Generación de entropía y flujo de entropía.
- 10. Transformación de calor en trabajo mediante procesos cíclicos.

BLOQUE II. TRANSMISION DE CALOR.

Tema 5: Introducción a la transmisión de calor.

- 1. Mecanismos de transmisión de calor.
- 2. Conducción.
- 3. Convección.
- 4. Radiación.

Tema 6: Transmisión de calor por conducción.

- 1. Definiciones y ley de Fourier.
- 2. Conductividad térmica.
- 3. Ecuación general de transferencia.
- 4. Condiciones de unicidad.

Tema 7: Conducción unidimensional en régimen permanente.

- 1. Introducción.
- 2. La placa plana.
- 3. El cilindro infinito.
- 4. La esfera.
- 5. Resistencia térmica.
- 6. Coeficiente global de transferencia.

Tema 8. Transmisión de calor por convección

- 1 Fundamentos físicos.
- 2 Clasificación de los procesos de convección.

Código:PFIRM888CQUTR8g6W4VzhkGYfgUfu1. Permite la verificación de la integridad de este documento electrónico en la dirección: https://pfirma.us.es/verifirma					
FIRMADO POR	REGINA NICAISE FITO	FECHA	06/06/2018		
ID. FIRMA	PFIRM888CQUTR8g6W4VzhkGYfgUfu1	PÁGINA	4/6		

- 3 Correlaciones de convección.
 - 3.1 Números adimensionales.
 - 3.2 Convección forzada.
 - 3.3 Convección libre.
- 4 Ordenes de magnitud del coeficiente de película.
- 5 Convección con cambio de fase: Ebullición y condensación.

Tema 9: Transmisión de calor por radiación.

- 1. Introducción.
- 2. Leyes de radiación.
- 3. Propiedades de la radiación.
- 4. Ley de Kirchoff.
- 5. Factores de forma.
- 6. Intercambio de energía radiante entre dos superficies grises y difusas.

BLOQUE III. APLICACIONES.

Tema 10: Combustión. Introducción.

- 1 Elementos del proceso de combustión.
 - 1.1 Combustibles.
 - 1.2 Comburente.
 - 1.3 Productos de la reacción.
- 2 Combustión definiciones.

Tema 11: Balance de masa.

- 1. Introducción.
 - 1.1 Objetivo.
 - 1.2 Aplicación.
 - 1.3 Hipótesis.
- 2 Balance de carbono.
 - 2.1 Determinación del C en humos.
 - 2.2 Determinación de a y b.
- 3 Balance de oxigeno (para combustión del carbono).
 - 3.1 Oxigeno para combustión completa.
 - 3.2 Oxigeno introducido
 - 3.3 Oxigeno empleado.
 - 3.4 Oxigeno en los humos.
- 4 Balance total por Kg., de combustible.
- 5 Cierre del balance de masa.

Tema 12: Balance de energía.

- 1. Balance de energía en procesos de combustión.
- 2. Temperaturas extremas.
- 3. Calor transferido.
- 4. Cálculo simplificado de la entalpía de los productos de la reacción.

Tema 13: Rendimiento.

1 Expresión general del rendimiento.

Código:PFIRM888CQUTR8g6W4VzhkGYfgUfu1. Permite la verificación de la integridad de este documento electrónico en la dirección: https://pfirma.us.es/verifirma				
FIRMADO POR	REGINA NICAISE FITO	FECHA	06/06/2018	
ID. FIRMA	PFIRM888CQUTR8g6W4VzhkGYfgUfu1	PÁGINA	5/6	

- 2 Calor introducido.
- 3 Perdidas por inquemados.
 - 3.1 Inquemados sólidos.
 - 3.2 Inquemados gaseosos.
 - 3.3 Perdidas debidas a los humos secos.
 - 3.4 Perdidas debidas al vapor de agua.
 - 3.5 Perdidas sensibles en residuo.
 - 3.6 Perdidas por convección y radiación.
- 4 Diagrama de Sankey.
- 5 Precalentamiento de la carga.
- 6 Precalentamiento del aire de entrada.

Tema 14: Ciclo de Brayton.

- 1 Ciclo de Carnot.
- 2 Ciclo Brayton de Comparación.
- 3 Ciclo Brayton Real.
- 4 Mejoras del Ciclo de Brayton.

Tema 15: Ciclo de Potencia de Vapor.

- 1 Ciclo de Carnot.
- 2 Ciclo de Rannkine Básico.
- 3 Ciclo de Rannkine con Sobrecalentamiento.
- 4 Ciclo de Rannkine Real.
- 5 Mejoras del Ciclo de Rannkine.

Tema 16: Motores de combustion.

- 1 Ciclo de Carnot.
- 2 Ciclo OTTO.
- 3 Ciclo DIESEL.
- 4 Ciclo Mixto.

VI. Bibliografía

- Frank P. Incropera, David P. De WIT. "Fundamentos de Transferencia de Calor" PEARSON, 1996.
- M. LLorens, A.L. Miranda Barreras. "Ingeniería Térmica". CEAC.1999.
- Isidoro Martínez. "Termodinámica básica y aplicada" DOSSAT. 1992.
- Grupo de Termotecnia. Dpto. de Ingeniería energética y mecánica de fluidos. "Colección de Tablas, Gráficas y Ecuaciones de Transmisión de Calor". 2002
- Grupo de Termotecnia. Dpto. de Ingeniería energética y mecánica de fluidos. "Colección de Transparencias de Transmisión de Calor". 2002.
- Grupo de Termotecnia. Dpto. de Ingeniería energética y mecánica de fluidos.
 "Colección de Problemas Propuestos y Resueltos de Transmisión de Calor".
 2002.

Código:PFIRM888CQUTR8g6W4VzhkGYfgUfu1. Permite la verificación de la integridad de este documento electrónico en la dirección: https://pfirma.us.es/verifirma					
FIRMADO POR	REGINA NICAISE FITO	FECHA	06/06/2018		
ID. FIRMA	PFIRM888COUTR8a6W4VzhkGYfaUfu1	PÁGINA	6/6		