

Grado en Ingeniería Eléctrica: Líneas TFG Curso 2025/26

Normativa TFG
Procedimiento académico y administrativo
Directorio PDI

Dpto. de Ingeniería Eléctrica

Dpto. de Tecnología Electrónica

Dpto. de Arquitectura y Tecnología de Computadores

Dpto. Ingeniería del Diseño

Dpto. de Física Aplicada I

Dpto. de Matemática Aplicada II

Dpto. Ingeniería Química

Dpto. Ing. Mecánica y de Fabricación

Dpto. Ing. y Ciencia de los Materiales y del Transporte

Dpto. Organización Industrial y Gestión de la Empresa II

Dpto. Ingeniería Energética

Dpto. de Ingeniería Eléctrica

Líneas ofertadas

L1.- Calidad de suministro eléctrico

Eficiencia en instalaciones eléctricas

Medida y análisis de la señal eléctrica en regímenes no sinusoidales Estudio de la potencia en condiciones no sinusoidales

L2.- Instalaciones eléctricas

Instalaciones eléctricas aisladas y conectadas a red. Instalaciones con suministro eléctrico basado en energías renovables Eficiencia energética en instalaciones.

L3.- Desarrollo de herramientas y casos de simulación de sistemas eléctricos

Realización de proyectos de simulación de sistemas eléctricos mediante software específico.

L4.- Desarrollo de instalaciones de baja y alta tensión

Realización de proyectos de instalación de baja y alta tensión aplicado en edificio singular, parque industrial o cualquier otro ámbito.

L5.- Diseño de motores síncronos de imanes permanentes

Diseño mediante elementos finitos. Diseño de convertidores electrónicos. Estudio de algoritmos de control.

L6.- Entorno web/App para la monitorización de medidas

Esta línea trata de buscar soluciones a dos problemas fundamentales a los que los Ingenieros Eléctricos deben enfrentarse en la actualidad en instalaciones domésticas e industriales, como son el control y monitorización del consumo eléctrico y la calidad de la energía eléctrica suministrada.

En ambos casos es necesario disponer de equipos especializados que permitan realizar un seguimiento continuado de las magnitudes eléctricas en las instalaciones, equipos que en la actualidad suelen tener un alto coste. Por ello en la línea propuesta se pretende buscar soluciones de bajo coste que permitan realizar una labor similar, algo que actualmente es factible a través de plataformas tales como Arduino y/o Raspberry Pi.

La flexibilidad de estas plataformas de desarrollo permite diseñar prototipos que se encarguen de medir, analizar y procesar los datos recogidos para determinar las medidas a tomar en relación a la mejora de la calidad del suministro y la gestión del consume eléctrico. Además, dada la conectividad y prestaciones de estas plataformas de bajo coste, es posible implementar aplicaciones o servicios web mediante los cuales sea sencillo consultar y gestionar los datos recogidos de forma telemática, lo que facilita en gran medida la monitorización de los sistemas eléctricos.

L7.- Diseño de sistemas de control en instalaciones eléctricas

Control de filtros y accionamientos eléctricos mediante técnicas de procesado digital de señal

L8.- Analogías eléctricas de mecanismos

Estudio de teoría de mecanismos desde las analogías con circuitos eléctricos

L9.- Ciencia de los datos en Ingeniería Eléctrica

- -Análisis y desarrollo de métodos y algoritmos de predicción de demanda de energía eléctrica y de generación de energía eléctrica.
- -Análisis y desarrollo de procesos y equipos de adquisición de datos aplicados a la Ingeniería Eléctrica.

L10.-Uso de Arduino en aplicaciones de modelismo ferroviario

Aplicación del ecosistema Arduino en el desarrollo de prototipos y aplicaciones particulares en el entorno del modelismo ferroviario.

L11.-Soluciones a la planificación y operación optima de redes activas de distribución

Trabajos fin de grado que revisen, estudien y desarrollen soluciones (hardware y/o software) para las redes de distribución con una presencia destacada de generación renovable distribuida, vehículo eléctrico, almacenamiento, demanda flexible, equipamiento basado en electrónica de potencia, etc. El objetivo es ampliar los conocimientos del ingeniero del área eléctrica respecto a los nuevos retos planteados en estos niveles de tensión, y familiarizarlos con las características de estos sistemas y las soluciones actuales en las mismas para llegar a un sistema más descabornizado, flexible, eficiente y económico.

L12.- Creación y realización de prototipos industriales con control electrónico mediante dispositivos de bajo coste

En esta línea se diseñarán prototipos industriales con control electrónico basados en DSP, Arduino, Rasperry Pi, etc.: trabajando desde la concepción del diseño hasta la materialización del prototipo, incorporando en el mismo un sistema de control mediante dispositivos de bajo coste.

L13.- Aplicación del método de los elementos finitos al estudio y diseño de sistemas eléctricos

Trabajos de fin de estudios orientados al análisis, diseño y optimización de los distintos elementos que constituyen los sistemas eléctricos (máquinas rotativas, transformador, cables, aislamiento, apoyos, almacenamiento de energía, elementos de compensación de reactiva, etc.) abordando los fenómenos electromagnéticos, térmicos y mecánicos involucrados mediante software basado en el método de los elementos finitos

L14.- Sistemas de energía renovable

Investigación, diseño o desarrollo de tecnologías y estrategias para la integración eficiente de sistemas de energía renovable, en la red eléctrica. Exploración de métodos para optimizar la estabilidad y la fiabilidad del suministro eléctrico mediante la hibridación con otras fuentes de energía, incluyendo almacenamiento de energía y sistemas de generación convencionales. Análisis de intermitencias y gestión de la demanda, así como aspectos económicos y regulatorios.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
D. Alfonso Bachiller Soler	L3, L4, L10	Sin Límite
D. Cesar Álvarez Arroyo	L1, L2, L3, L4, L6, L7, L12	Sin Límite
D. Francisco Casado Machado	L2, L11	Sin Límite

Líneas TFG Grado Ingeniería Eléctrica Curso 2025/26

D. Francisco Jesús Matas Díaz	L1, L2, L3, L7, L11 L14	Sin Límite
D. Guillermo Ortega Gómez	L2, L12	Sin Límite
D. Juan Carlos Bravo Rodríguez	L1, L2, L6, L7, L8, L9, L10	3
D. Juan Carlos del Pino López	L2, L3, L4, L6, L12, L13	3
D. Manuel Barragán Villarejo	L1, L2, L3, L6, L7, L11	Sin Límite
Dª. María Dolores Borrás Talavera	L1, L2, L3, L6, L7, L12, L14	Sin Límite
D. Mario Bermúdez Guzmán	L2, L3, L4	Sin Límite
D. Miguel Ángel González Cagigal	L2, L3, L7, L9	Sin Límite
Dª. Milagros Gómez Alós	L2	Sin Límite
D. Narciso Moreno Alfonso	L2, L4, L9, L14	Sin Límite
D. Ramón Cano González	L3, L4, L10	Sin Límite
D. Vicente Simón Sempere	L5	Sin Límite

Dpto. de Tecnología Electrónica

Líneas ofertadas

L1.- Diseño y Desarrollo de Software, Equipos, Máquinas e Instalaciones de Automatización

A partir de un documento de requisitos (USR) o de un proceso predefinido, el objetivo del proyecto será el diseño y desarrollo del software control y/o de supervisión una planta, proceso o máquina.

En general, las actividades del proyecto incluyen:

- 1. Elaboración de las especificaciones funcionales (FS)
- 2. Diseño de los test de aceptación (FATs)
- 3. Diseño del HMI o del sistema SCADA.
- 4. Definición de test de integración con el software de control.

Cuando el proyecto lo requiera se deberán desarrollar aspectos como:

- 1.Seleccionar y dimensionar sensores, actuadores y hardware de control (variadores, reguladores, PLCs, etc).
- 2. Cuadros eléctricos de control. eas ofertadas
- 3.Instalaciones auxiliares (neumáticas, eléctricas, comunicaciones, SAIs, etc.). Integración con las herramientas de desarrollo y control del proceso mediante OPC-DA, OPC-UA, u otros.

Profesorado	Líneas ofertadas	Nº de TFG ofertados
D. Francisco Javier Molina Cantero	L1	1
D. Miguel Ángel Leal Díaz	L1	1
D. Diego Francisco Larios Marín	L1	1
D. Álvaro Ariel Gómez Gutiérrez	L1	1

Dpto. de Arquitectura y Tecnología de Computadores

Líneas ofertadas

L1.- Desarrollo de sistemas para monitorización y análisis del autoconsumo e identificación de los grandes consumidores del hogar

Se pretende hacer uso de una arquitectura domótica abierta que soporte diversas tecnologías y estándares. Se contempla la integración con plataformas de hogar inteligente basadas en Cloud.

L2. - Desarrollo de sistemas para controlar electrodomésticos, equipos y dispositivos para favorecer un consumo inteligente

Se pretende hacer uso de una arquitectura domótica abierta que soporte diversas tecnologías y estándares. Se contempla la integración con plataformas de hogar inteligente basadas en Cloud.

L3.- Desarrollo de sistemas de control de instalaciones eléctricas (fotovoltaicas, térmicas, hidroeléctricas, etc.)

Se pretende desarrollar herramientas, basadas en código abierto, para la monitorización, el análisis y control de las instalaciones de energía, con el objetivo de optimizar el consumo y la eficiencia energética.

Profesorado	Líneas ofertadas	Nº de TFG ofertados
D. Daniel Cagigas Muñiz	L1, L2, L3	Sin Límite
D. José Antonio Ríos Navarro	L1, L2, L3	Sin Límite
D ^a . Lourdes Durán López	L1, L2, L3	Sin Límite
D. Francisco Luna Perejón	L1, L2, L3	Sin Límite
D. Santiago Díaz Romero	L1, L2, L3	Sin Límite

Dpto. Ingeniería del Diseño

Líneas ofertadas

L1.- Instalaciones eléctricas de plantas industriales

Realización de proyectos profesionales innovadores de instalaciones eléctricas industriales de BT, MT y AT bajo las mejores técnicas disponibles.

L2.- Instalaciones eléctricas de polígonos y parques industriales

Realización de proyectos profesionales innovadores de instalaciones eléctricas industriales, incluidas las de infraestructura de telecomunicaciones bajo las mejores técnicas disponibles.

L3.- Líneas eléctricas de MT y AT

Realización de proyectos profesionales innovadores de plantas industriales de líneas eléctricas bajo las mejores técnicas disponibles.

L4.- Máquinas eléctricas

Realización de proyectos profesionales innovadores de máquinas eléctricas bajo las mejores técnicas disponibles.

L5.- Centros de transformación

Realización de proyectos profesionales innovadores de centros de transformación bajo las mejores técnicas disponibles.

L6.- Instalaciones eléctricas de centros comerciales y de servicios

Realización de proyectos profesionales innovadores de instalaciones de centros comerciales bajo las mejores técnicas disponibles.

L7.- Instalaciones energéticas industriales y de edificación

Realización de proyectos profesionales innovadores de instalaciones energéticas industriales y de edificación bajo las mejores técnicas disponibles.

L8.- Instalaciones térmicas industriales y de edificación

Realización de proyectos profesionales innovadores de instalaciones térmicas industriales y de edificación bajo las mejores técnicas disponibles.

L9.- Sostenibilidad de instalaciones y construcciones industriales

Realización de proyectos innovadores de mejora de la sostenibilidad de instalaciones y construcciones industriales bajo las mejores técnicas disponibles

L10.- Subestaciones eléctricas

Realización de proyectos profesionales innovadores de subestaciones bajo las mejores técnicas disponibles.

L11.- Plantas solares, eólicas y de energías renovables

Realización de proyectos profesionales innovadores de plantas solares, eólicas, de biomasa y otras energías renovables bajo las mejores técnicas disponibles.

L12.- Modelado, simulación y optimización de procesos de fabricación sostenibles

Realización de proyectos profesionales innovadores de modelado dinámico de la sostenibilidad de procesos de fabricación bajo las mejores técnicas disponibles.

L13.- Modelado y simulación de entornos de fabricación a través de sistemas CAx

Realización de proyectos profesionales innovadores de modelado y simulación digital de entornos de fabricación bajo las mejores técnicas disponibles.

L14.- PLM (Product Lifecycle Management) sostenible

Realización de proyectos profesionales innovadores de modelos y gestión de datos de productos sostenible en su ciclo de vida bajo las mejores técnicas disponibles.

L15.- Metabolismo social

Realización de proyectos profesionales innovadores de metabolismo industrial inteligente bajo las mejores técnicas disponibles.

Realización de proyectos profesionales innovadores de metabolismo urbano inteligente bajo las mejores técnicas disponibles.

L16.- Automatización y control eléctrico

Realización de proyectos profesionales innovadores de automatización y control de productos, instalaciones y sistemas eléctricos bajo las mejores técnicas disponibles.

L17.- Proyectos de redes de infraestructura eléctrica urbana

Realización de proyectos profesionales innovadores de redes de distribución urbana en media y baja tensión

L18.- Instalaciones hospitalarias y de servicio

Realización de proyectos profesionales innovadores de instalaciones hospitalarias bajo las mejores técnicas disponibles.

Realización de proyectos profesionales de instalaciones en centros de servicio bajo las mejores técnicas disponibles.

L19.- Proyecto de instalaciones sometidas a reglamentos industriales

Realización de proyectos profesionales innovadores de instalaciones sometidas a reglamentos industriales bajo las mejores técnicas disponibles.

L20.- Proyectos para la eficiencia energética de edificios e instalaciones industriales

Realización de proyectos profesionales innovadores de eficiencia energética de edificios e instalaciones industriales bajo las mejores técnicas disponibles.

L21.- Industria 4.0

Realización de proyectos profesionales innovadores sobre facilitadores tecnológicos de la Industria 4.0., big data, dispositivos móviles, cloud, internet de las cosas, realidad aumentada y/o realidad virtual.

L22.- Prevención de Riesgos

Realización de proyectos profesionales innovadores de evaluación y control de riesgos laborales bajo las mejores técnicas disponibles

L23.- Urbanismo industrial

Realización de proyectos profesionales innovadores de instalaciones de infraestructura de parques y polígonos industriales; incluidas infraestructuras de telecomunicaciones bajo las mejores técnicas disponibles.

L24.- Dirección de Proyectos

Realización de proyectos profesionales innovadores de dirección integrada de proyectos bajo el estándar PMBok.

L25.- No ofertada para el curso 2025/26

L26.- Sistemas y nuevas tecnologías sostenibles en la ingeniería industrial

Propuesta de análisis y desarrollo en el campo de la ingeniería industrial de las fases de conceptualización, simulación y materialización desde los conceptos de sostenibilidad y resiliencia. Evaluación crítica de las nuevas tecnologías desde el punto de vista de la

sostenibilidad social, económica y ambiental, así como también sus herramientas de gestión correspondientes.

L27.- No ofertada para el curso 2025/26

L.28 Modelado de edificios en entorno BIM y cálculo de instalaciones en entornos MEP Realizar el modelado de información de la construcción 3D (BIM) de un edificio y el diseño y posterior cálculo de sus instalaciones en entornos MEP.

- -Situación de partida: se partirá de la planimetría Cad de un edificio.
- -Trabajos a realizar: modelar el edificio completo en entorno BIM y calcular las instalaciones del mismo en entorno de trabajo MEP.
- -Resultados a entregar: proyecto completo con el modelo virtual del edificio y las memorias del cálculo de las instalaciones con la justificación del cumplimiento del CTE.

Profesorado	Líneas ofertadas	Nº de TFG ofertados
D. Juan Manuel Álvarez Espada	Líneas L1 a L24	Sin límite
Dª. María Jesús Ávila Gutiérrez	Líneas L1 a L24	Sin límite
D. José Antonio Balbín Molina	Líneas L1 a L24	Sin límite
D. Antonio Córdoba Roldán	Líneas L1 a L24	Sin límite
Dª. Nieves Cuadrado Cabello	Líneas L1 a L24	Sin límite
Dª. Ana de las Heras García de Vinuesa	Líneas L1 a L24	Sin límite
D. Eduardo González-Regalado Montero	Líneas L1 a L24	Sin límite
D. Juan Ramón Lama Ruíz	Líneas L1 a L24	Sin límite
Dª. Amalia Luque Sendra	Líneas L1 a L24	Sin límite
D. Alejandro Manuel Martín Gómez	Líneas L1 a L24	Sin límite
Dña. María Estela Peralta Álvarez	Líneas L1 a L24	Sin límite
D. José Ramón Pérez Gutiérrez	Líneas L1 a L24	Sin límite
D. Alberto Picardo Pérez	Líneas L1 a L24	Sin límite
D. Víctor Manuel Soltero Sánchez	Líneas L1 a L24	Sin límite
D. Francisco Zamora Polo	Líneas L1 a L24	Sin límite
D. Manuel Viggo Castilla Roldán	Líneas L26 y L28	Sin límite
Dª. María Rocío Ruíz Pérez	Línea EL8	Sin límite
D. Francisco Villena Manzanares	Línea L28	Sin límite
D. Juan Francisco Fernández Rodríguez	Línea L28	Sin límite

Dpto. de Física Aplicada I

Líneas ofertadas

L1.- Naturalización Urbana y Desarrollo Social

Actualmente es necesario realizar la naturalización urbana para poder responder al reto de cambio climático. Para ello debe realizarse proyectos e instalaciones eléctricas y mecánicas o reconstrucción, con mejores procesos en base a optimizar:

- Los balances energéticos generales.
- La naturalización.
- La gestión de los recursos y los residuos en la ciudad.

Se pretende generar un diseño industrial de procesos sostenibles que contribuya a desarrollar entornosmás vivibles por los ciudadanos y asumibles por el planeta tierra.

L2.- Aplicaciones industriales del plasma

En esta línea se abordará diversas aplicaciones de la física y química de plasmas en la Ingeniería Química, de Materiales y de otras disciplinas incluidas en las diferentes titulaciones de la EPS.

L3.-Simulación de materiales para celdas solares fotovoltaicas

El objetivo de esta línea es la simulación en la escala atómica de materiales componentes de celdas solares y de sus interfaces. Este tipo de estudios se orienta a resolver problemas tecnológicos que afectan a las células solares que están en fase de desarrollo, tales como el aumento de la estabilidad o la eficiencia de fotoconversión, o la sustitución de elementos nocivos como el plomo.

Las habilidades por desarrollar incluyen: especificación de estructuras moleculares y cristalinas, uso de programas avanzados de simulación de materiales, uso de superordenadores, análisis de datos. Un ejemplo de estudio puede verse en este video disponible en el siguiente enlace: https://youtu.be/8ee25WU2bEA

L4.-Desarrollo de dispositivos avanzados basados en nanomateriales multifuncionales Esta línea aborda diferentes temáticas relacionadas con el desarrollo de dispositivos avanzados con aplicaciones en fotovoltaica y nanogeneradores, superficies inteligentes y microelectrónica flexible, entre otros.

Los siguientes enlaces muestran algunos de los proyectos europeos relacionados, actualmente en desarrollo: https://3dscavengers.icms.us-csic.es/ y https://fetopen-soundofice.icms.us-csic.es/ En particular los trabajos propuestos abarcan diferentes actividades independientes, algunas de las cuales se muestran a continuación:

- Diseño y/o desarrollo de equipos modulares de vacío y plasma para la fabricación de nanomateriales funcionales.
- Diseño y/o desarrollo de set-ups electrónicos para el control de procesos de fabricación mediante técnicas de vacío y plasma.
- Diseño y/o desarrollo de set-ups electrónicos para la caracterización de dispositivos avanzados.
- Fabricación de nanomateriales funcionales para las aplicaciones anteriormente descritas.
- Caracterización de nanomateriales funcionales para las aplicaciones anteriormente descritas.

• Concepción, diseño y/o fabricación de útiles de laboratorio mediante impresión 3D. Las tareas experimentales se llevarán a cabo en el CITIUS, en el CATEPS y/o en el Instituto de Ciencia de Materiales de Sevilla ubicado en la Isla de la Cartuja.

L5.- Diseño y evaluación de sensores piezorresistivos basados en nanocomposites PDMS/GNP para aplicaciones de monitorización mecánica.

El objetivo del TFG es diseñar, fabricar y caracterizar sensores piezorresistivos flexibles utilizando un nanocomposite de silicona PDMS dopada con nanoplaquetas de grafeno (GNP). Se investigará la relación entre la proporción de nanocarga y la sensibilidad eléctrica del material bajo diferentes tipos de deformación.

Además, se implementarán pruebas de monitorización de movimiento (como flexión de dedos o presión) y se evaluará la viabilidad del uso del sensor en sistemas de monitorización mecánica o biométrica.

El trabajo incluye la parte experimental de síntesis, caracterización eléctrica básica y análisis de resultados, con posibilidad de integración en un sistema sencillo de adquisición de datos.

L6.- Aplicación de la Microscopía de Fuerza Atómica (AFM) en la caracterización avanzada de materiales funcionales: análisis topográfico, mecánico y eléctrico

El objetivo del TFG es explorar el uso de la Microscopía de Fuerza Atómica (AFM) como herramienta de caracterización avanzada para materiales funcionales de interés en Ingeniería Mecánica y Eléctrica. A través de diferentes modos operativos (mecánicos y eléctricos), se analizarán propiedades como la topografía superficial, la respuesta mecánica local (modulo, dureza, adhesión) y la distribución eléctrica a micro/nanoescala. Se aplicará la metodología a diversos tipos de materiales, incluidos polímeros, compuestos, recubrimientos o materiales tratados, con el fin de comparar su comportamiento superficial. El trabajo incluye preparación de muestras, adquisición de datos y análisis comparativo con otras técnicas convencionales, mostrando cómo el AFM puede resolver problemas típicos en caracterización de materiales para ingeniería.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
D. Norge Cruz Hernández	L3	4*
D. Hicham Bakkali Azlou	L5 y L6	4
D. Jesús Cuevas Maraver	L2 y L4	4*
D. Ramón Escobar Galindo	L4	4*
D. Bertrand Lacroix	L4	4*
Dª Mª del Carmen López Santos	L2 y L4	4*
D. Eduardo A. Menéndez Proupin	L3	4*
Dª Mª del Carmen Morón Romero	L1	4*

Dpto. de Matemática Aplicada II

Líneas ofertadas

L1.- Análisis y Simulación de Sistemas Dinámicos en Ingeniería Eléctrica.

La modelización matemática del comportamiento de diferentes dispositivos eléctricos nos lleva de manera irremediable al estudio de un sistema dinámico multiparamétrico descrito por un conjunto de ecuaciones diferenciales o ecuaciones en derivadas parciales. El estudio analítico del sistema de ecuaciones diferenciales persigue conocer la pauta de comportamiento del dispositivo en toda su amplitud para, con ello, predecir su conducta futura y activar medidas de control que permitan mejorar su rendimiento y asegurar su óptimo funcionamiento. El estudio analítico suele ser capaz de detectar los equilibrios del sistema, así como sus estabilidades y en algunos casos dar a conocer los comportamientos oscilatorios. Sin embargo, un conocimiento más profundo requiere en muchas ocasiones la aplicación de técnicas numéricas llevadas a la práctica mediante el uso computacional.

Se presentan en esta línea diferentes dispositivos eléctricos (por ejemplo, circuitos de Chua y Colpitts, sistemas de distribución eléctrica) cuyo comportamiento no es del todo conocido y se pretende utilizar técnicas analíticas y numéricas para dar a conocer parte de su conducta. Se recurrirá al programa Matlab para el análisis numérico y la simulación de los dispositivos y sistemas. Sería sumamente recomendable cursar en el periodo de elaboración del TFG o haber cursado la asignatura Métodos Numéricos en la Ingeniería.

L2.- No ofertada para el curso 2025/26

L3.- Utilidad de índices temporales en modelos de programación matemática

El tiempo es a menudo uno de los elementos intrínsecos a un problema de optimización. Los índices temporales a menudo se utilizan para modelar tal elemento, dado que proporcionan modelos más sencillos de entender. Aun así, existen otras opciones, como por ejemplo tratar el tiempo como variable de decisión. En este trabajo se compararán los dos acercamientos. Para realizar un TFG en esta línea es recomendable haber cursado la asignatura "Optimización" y tener conocimientos de Python.

L4.- Optimización de infraestructura de carga para vehículos eléctricos

La distribución de estaciones de carga para vehículos eléctricos (VE) es un tema clave en la expansión de la electromovilidad.

El objetivo principal será desarrollar un modelo de optimización que determine la ubicación y el tamaño óptimos de las estaciones de carga, para maximizar su eficiencia y minimizar el impacto en la red eléctrica.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
Victoriano Carmona Centeno	L1	3
Federico Perea Rojas-Marcos	L3, L4	1/ por línea

Dpto. Ingeniería Química

Líneas ofertadas

L1.- Eficiencia Energética

Diseñar en clave de ahorro energético los proyectos de ingeniería permite formar técnicos más competitivos y reducir los consumos en los proyectos resultantes.

L2.- Valorización de Residuos Urbanos

El aprovechamiento de los residuos convirtiéndoles en recursos con técnicas novedosas o ancestrales permite hacer más sostenible los ciclos de vida en la población.

L3.- Tratamiento de aguas

Diseño de sistemas de tratamiento de aguas potables y aguas residuales, urbanas e industriales.

L4.- Ingeniería ambiental

Desarrollo de sistemas naturales o naturalizados de ingeniería que permitan la eficiencia energética, en gestión de recursos y residuos y en desarrollo social del entorno cercano.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
Dª. Laura Pozo Morales	L1, L2, L3	5
D. Julián Lebrato Martínez	L4	4

Dpto. Ing. Mecánica y de Fabricación

Líneas ofertadas

L1.- Propiedades multifuncionales de materiales compuestos

Modelos analíticos y numéricos para la estimación de propiedades efectivas multifuncionales de materiales compuestos. Uso de tomografías computarizadas (X-ray), programas de elementos finitos, Matlab, Mathematica, etc. Materiales compuestos con inclusiones, fibras o policristalinos. Compuestos de fabricación aditiva (3D-printing). Micro y nanoescala.

L2.- Simulación computacional de máquinas y mecanismos

Aplicación de técnicas computacionales orientadas a la simulación cinemática y dinámica de máquinas y mecanismos. Simulación de vehículos automóviles, ferrocarriles, etc.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
D. Pedro Urda Gómez	L2	Sin Límite
D. Federico C. Buroni	L1	Sin Límite

Dpto. Ing. y Ciencia de los Materiales y del Transporte

Líneas ofertadas

L1.- Caracterización mediante microscopía electrónica de transmisión de materiales funcionales de interés tecnológico

Esta línea de investigación consistirá en la caracterización estructural y química a escala nanométrica de materiales funcionales de última generación, con especial énfasis en materiales para producción y almacenamiento de energía, y técnicas de microscopía de baja dosis.

L2.-Ingeniería y desarrollo de accesorios para equipos de microscopía electrónica

En esta línea se perseguirá el diseño y desarrollo de equipamiento y accesorios para microscopios electrónicos de transmisión y barrido, en particular la modificación y diseño de nuevos portamuestras, accesorios para preparación de muestras y equipos para limpieza de muestras.

L3.- Diseño y análisis mediante modelos de elementos finitos de estructuras

En esta línea se desarrollarán diseños de elementos estructurales que serán analizados mediante modelos de elementos finitos. Se optimizarán y se desarrollarán estructuras, conjuntos de estructuras o elementos locales desde el punto de vista funcional incorporando en el estudio el uso de nuevos materiales funcionales tales como los materiales compuestos. Se abordarán diseños, análisis, optimizaciones. Estos trabajos se asocian a la Cátedra de Empresa Innovación en Ingeniería CT- Ingenieros

L4.- Diseño y selección de materiales para fabricar pilas de combustible de óxido sólido Fabricación y caracterización de materiales que forman algunos ánodos y electrolitos para pilas de combustible de óxido sólido, con el fin de obtener electrolitos y electrodos (ánodos y cátodos) mejorados y novedosos, con un alto rendimiento, gran resistencia al envenenamiento y excelentes propiedades fisicoquímicas.

L5.- Estudio microestructural de recubrimientos funcionales en piezas fabricadas por Impresión 3D

En esta línea se pretende caracterizar recubrimientos multifuncionales fabricados mediante técnicas PVD sobre polímeros impresos mediante FFF para disminuir su degradación por el calor solar, la radiación ultravioleta y/o para obtener blindaje contra interferencias electromagnéticas.

L6.- Estudio mecánico de piezas fabricadas por Impresión 3D

En esta línea se avanzará en el desarrollo de modelos impresos por fabricación aditiva/impresión 3D para optimizar su comportamiento mecánico. Se imprimirán, optimizarán y se caracterizarán el comportamiento mecánico estudiando la influencia de determinados parámetros.

L7.-Análisis Forense

Estudio de casos de fallos de materiales y análisis de incidentes, determinación de las causas que lo provocaron.

L8.- Técnicas de fabricación en 3D

Las técnicas de fabricación en 3D de materiales metálicos permiten la producción de componentes complejos con alta precisión. Estas tecnologías ofrecen ventajas significativas en la eficiencia del uso de la energía y los materiales, así como la reducción de desperdicios. La investigación en este campo se debe centrar en mejorar la calidad de las piezas, optimizar los parámetros de proceso y explorar nuevas aplicaciones industriales.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
Dª. Ana M. Beltrán Custodio	L3, L7	Sin Límite
D. Jesús Hernández Saz	L1, L2, L5, L6	Sin Límite
D. Yadir Torres Hernández	L3, L4, L7	Sin Límite
Dª Paloma Trueba Muñoz	L3, L7	Sin Límite
D. Fco. José García García	L4, L7	Sin Límite
D. Juan G. Lozano Suárez	L7	Sin Límite
Dª. Isabel Montealegre Meléndez	L8	Sin Límite
Dª. Eva Mª Pérez Soriano	L8	Sin Límite
Dª. Cristina Mª Arévalo Mora	L8	Sin Límite

Dpto. Organización Industrial y Gestión de la Empresa II

Líneas ofertadas

L1.- Análisis económico financiero de una empresa de servicios

Análisis económico financiero de una empresa de servicios, usando SABI Se debe realizar un análisis de viabilidad de una empresa de servicios cuyas cuentas anuales estén publicadas en el recurso SABI (Sistema de Análisis de Balances Ibéricos) de la U.S. para un periodo de 10 años. Se deben usar herramientas de análisis vertical, horizontal y ratios económicos- financieros.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
Dª. Eva Arco Martínez	L1	3

Dpto. Ingeniería Energética

Líneas ofertadas

L1.- Comportamiento térmico de la envolvente del edificio y sus instalaciones

Los subtemas más relevantes de esta línea de investigación resultan: comportamiento térmico de la envuelta del edificio y sus instalaciones; soluciones inteligentes de producción y utilización de energía a nivel edificio y/o distritos: uso de la masa térmica del edificio, estrategias innovadoras; y el análisis de la reglamentación nacional o internacional.

L2.- Integración en edificios de energía renovables y disipadores de calor al medio ambiente

Esta línea está vinculada al análisis y caracterización de tecnologías innovadoras y convencionales de generación de calor, frío y electricidad con/sin almacenamiento para su uso en generación de agua/aire caliente o frío. Estas fuentes renovables o naturales son integradas en edificios o entornos urbanos como sistemas pasivos (environmental heat sinks).

L3.- Clima Urbano (confort en exteriores) e impacto del entorno urbano en el comportamiento térmico de los edificios

Esta línea engloba la caracterización térmica de espacios abiertos, tales como estancias o calles. Esta caracterización está vinculada al confort térmicos y el impacto del entorno en los edificios colindantes y en las sensaciones de los ocupantes. Para ello se trabaja con técnicas experimentales y herramientas de simulación que permiten conocer el efecto de isla de calor y la sensación térmica de los ciudadanos en una serie de indicadores de confort. Todo con el objetivo de evaluar la situación energética del entorno, analizar sus implicaciones medioambientales y diseñar estrategias de mitigación en función de las condiciones finales que se quieran.

Profesorado	Líneas ofertadas	N.º de TFG ofertados
Dª. Teresa Rocío Palomo Amores	L1, L2, L3	7
D. José Sánchez Ramos	L1, L2, L3	5
Dª. Mª del Carmen Guerrero Delgado	L1, L2, L3	6